• Accueil
  • Math
  • Find the distance between (-2,4,1) and (1,2,3)​...

Find the distance between (-2,4,1) and (1,2,3)​

Answers

  • Réponse publiée par: pataojester10

    Step-by-step explanation:

    6 and 3

    1

  • Réponse publiée par: kirbydimaranan
    10

    Step-by-step explanation:

    What is the distance between (-2, 5) (4,-3)?

    \bf{}x_{1} =  - 2

    \bf{}y _{1} = 5

    \bf{}x _{2} = 4

    \bf{}y _{2} =  - 3

    \bf{}d =  \sqrt{(x _{2}  - x _{1} ) {}^{2} + (y _{2}  - y _{1}  ) {}^{2}  }

    \bf{}d =  \sqrt{ \big(4 - ( - 2) \big) {}^{2}  +  \big(( - 3) - 5) {}^{2} }

    \bf{}d =  \sqrt{(4 + 2) {}^{2}  + ( - 8) {}^{2} }

    \bf{}d =  \sqrt{(6) {}^{2} + ( - 8) {}^{2}  }

    \bf{}d =  \sqrt{36 + 64}

    \bf{}d =  \sqrt{100}

    \fbox{ \:  \: \bf{}d = 10 \:  \:  \:  \: }

    =============

    #CarryOnLearning

  • Réponse publiée par: maledabacuetes

    7.)distance between c and d is (3,3)

  • Réponse publiée par: elaineeee

    The distance between the points (-2, -1) and (3, 4) is d = 5\sqrt{2} units or is approximately 7.07 units.

    Explanation:

    Given:

    P_{1} = (-2,-1)

    P_{2} = (3,4)

    Formula:

    Distance formula (d): d=\sqrt{(y_{2} - y_{1})^{2} + (x_{2} - x_{1})^{2}}

    Solution:

    d=\sqrt{(y_{2} - y_{1})^{2} + (x_{2} - x_{1})^{2}}

    d=\sqrt{[4 - (-1)]^{2} + [3 - (-2)]^{2}}

    d=\sqrt{(4 + 1)^{2} + (3 + 2)^{2}}

    d=\sqrt{(5)^{2} + (5)^{2}}

    d=\sqrt{25 + 25}

    d \sqrt{50}

    d = \sqrt{(25)(2)}

    d = \sqrt{(5^{2})(2)}

    d = 5\sqrt{2}

    d = 5\sqrt{2}

    d = 7.071067812 units

    d ≈ 7.07 units

  • Réponse publiée par: Axelamat

    No cheatingplz

Connaissez-vous la bonne réponse?
Find the distance between (-2,4,1) and (1,2,3)​...