• Accueil
  • Math
  • ·a through is formed by nailing together, edge to...

·a through is formed by nailing together, edge to edge, two
length, so that the right section is a right triangle. if 15 gal. of war
poured into the trough and if the trough is held level so that a right section of
the water is an isosceles right triangle, how deep is the water? (231 cu. in.
1 gal.)​

Answers

  • Réponse publiée par: axelamat70
    2). 
    c^{2} =  a^{2} + b^{2}
    c^{2} = 10^{2} + 10^{2}
    c^{2} = 100+100
    c^{2} = 200
    c = \sqrt{200} = 10 \sqrt{2}

    3).
    c^{2} = a^{2} + b^{2}
    15^{2} = a^{2} + 3^{2}
    225 = a^{2} + 9
    a^{2} = 225 - 9
    c = \sqrt{216} = 6 \sqrt{6}

    4). 
    c^{2} = a^{2} + b^{2}
    20^{2} = a^{2} + 10^{2}
    400 = a^{2} + 100
    a^{2} = 400 - 100
    c = \sqrt{300} = 10 \sqrt{3}

    5).
    c^{2} = a^{2} + b^{2}
    5^{2} = a^{2} + a^{2}
    25 = 2a^{2}
    a^{2} = \frac{25}{2}
    c = \sqrt{\frac{25}{2}} = 5\sqrt{\frac{1}{2}}

    6).
    P = 4s = 80cm
    s = 80/4 = 20
    A = s^{2}20^{2} = 400cm^{2}
  • Réponse publiée par: kambalpandesal23

    12479#9#[email protected] this is the basis answer or yours

  • Réponse publiée par: candace08

    A=bh/2

    Thats the answer

  • Réponse publiée par: brianneaudreyvuy
    Please click the image below to view the solutions (and proofs) for each problem.

    ANSWERS:

    1)  hypotenuse = 6 units
        leg = 3√2  units

    2) diagonal = 10√2  cm

    3)  height of the building = 6√6  ft.

    4)  altitude = 10√3  cm

                         5√2
    5)   leg =     ----------     Note:  Simplified radical expression must not have
                           2                      a radical expression as denominator.

    6)  Area of the square = 400 cm²

    Solve the following problems.1. find the length of the hypotenuse and the legs of a right triangle w
Connaissez-vous la bonne réponse?
·a through is formed by nailing together, edge to edge, twolength, so that the right section is a ri...