" />  (4)
is offered by
, " />  (5)
where is the EulerMascheroni constant, is the Riemann zeta function, and is the Möbius function (Flajolet and also Vardi 1996, Schroeder 1997, Knuth 1998).Dirichlet verified the also stronger an outcome that
 (6)
(Davenport 1980, p.34). Regardless of the divergence of the amount of mutual primes,the alternating series (7)
(OEIS A078437) converges (Robinson and Potter1971), but it is not recognized if the sum (8)
does (Guy 1994, p.203; Erdős 1998; Finch 2003). There are also classes the sums of reciprocal primes v sign established by congruences top top , because that example (9)
(OEIS A086239), where (10)
(Glaisher 1891b; Finch 2003; Jameson 2003, p.177), (11)
(OEIS A086240; Glaisher 1893, Finch 2003),and (12)
(OEIS A086241), where (13)
(Glaisher 1891c; Finch 2003; Jameson 2003, p.177). Although diverges, Brun (1919) confirmed that
(18) (19) (20) (21)
   
   
    (24)

(OEIS A093597 and A093598). Consider the analogous sum where, in addition, the terms consisted of must have actually an odd variety of distinct prime factors, i.e., is odd and also . The first couple of such numbers room 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 42, ... (OEIS A030059), which encompass the composite numbers 30, 42, 66, 70, 78, 102, ... (OEIS A093599). Then   
   
   ^2zeta(2p))/(2zeta(p)zeta(2p))," /> 

(Gourdon and Sebah). The first few terms room then (OEIS A093595 and A093596). The sum (OEIS A086242) is additionally finite (Glaisher 1891a;Cohen; Finch 2003), where
 (35) is the totient function, and also is the Riemann zeta function.Some curious sums satisfied by primes include (36)

(39) (40)
2)lnpsum_(k=1)^infty1/(e^(p^kx)+1) " /> 

(Berndt 1994, p.114). Let be the variety of ways an integer have the right to be composed as a amount of 2 or much more consecutive primes. For example, , for this reason and , for this reason . The succession of worths of because that , 2, ... Is given by 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, ... (OEIS A084143). The complying with table provides the first few such the =k" /> for small .  OEIS  values of such the =k" />  1  A050936  5, 8, 10, 12, 15, 17, 18, 23, 24, 26, 28, 30, 31, 36, ...  2  A067372  36, 41, 60, 72, 83, 90, 100, 112, 119, ...  3  A067373  240, 287, 311, 340, 371, 510, 660, 803, ... 
Similarly, the complying with table offers the first couple of such the for little .  OEIS  values that such the  1  A084146  5, 8, 10, 12, 15, 17, 18, 23, 24, 26, 28, 30, 31, 39, ...  2  A084147  36, 41, 60, 72, 83, 90, 100, 112, 119, 120, 138, ... 
Now take into consideration instead the number of ways in which a number have the right to be represented as a sum of one or more consecutive primes (i.e., the exact same sequence as prior to but one larger for every prime number). Amazingly, it then turns out that (42)

(Moser 1963; Le Lionnais 1983, p.30). SEE ALSO: Bruns Constant, Harmonic series of Primes, Mertens Constant, Mertens 2nd Theorem, element Formulas, element Number, prime Products, element Zeta Function, Primorial, amount of prime FactorsPortions of this entry contributed by JeanClaudeBabois REFERENCES:Bach, E. And Shallit, J. §2.7 in Algorithmic Number Theory, Vol.1: effective Algorithms. Cambridge, MA: MIT Press, 1996. Berndt, B.C. "Ramanujan"s concept of element Numbers." Ch.24 in Ramanujan"s Notebooks, component IV. New York: SpringerVerlag, 1994. Brun, V. "La serie , les dénominateurs sont nombres premiers jumeaux est convergente où finie." Bull. Sci. Math. 43, 124128, 1919.Cohen, H. "High Precision Computation that HardyLittlewood Constants." Preprint.http://www.math.ubordeaux.fr/~cohen/hardylw.dvi. Davenport, H. MultiplicativeNumber Theory, 2nd ed. New York: SpringerVerlag, 1980. Doster, D. "Problem 10346." Amer. Math. Monthly 100, 951,1993. Erdős, P. "Some that My brandnew and Almost brandnew Problems and Results in Combinatorial Number Theory." In Number Theory: Diophantine, Computational and Algebraic Aspects. Proceedings of the worldwide Conference hosted in Eger, July 29August 2, 1996 (Ed. K.Győry, A.Pethő and V.T.Sós). Berlin: de Gruyter, pp.169180, 1998. Finch, S.R. "MeisselMertens Constants." §2.2 in mathematical Constants. Cambridge, England: Cambridge university Press, pp.9498, 2003. Finch, S. "Two Asymptotic Series." December 10, 2003. Http://algo.inria.fr/bsolve/. Flajolet, P. And also Vardi, I. "Zeta role Expansions of timeless Constants."Unpublished manuscript. 1996. Http://algo.inria.fr/flajolet/Publications/landau.ps. Glaisher, J.W.L. "On the Sums of the Inverse powers of the PrimeNumbers." Quart. J. Pure Appl. Math. 25, 347362, 1891a. Glaisher, J.W.L. "On the series ." Quart. J. Pure Appl. Math. 25, 375383, 1891b.Glaisher, J.W.L. "On the series ." Quart. J. Pure Appl. Math. 25, 4865, 1891c.Glaisher, J.W.L. "On the collection ." Quart. J. Pure Appl. Math. 26, 3347, 1893.Gourdon, X. And Sebah, P. "Collection of collection for ." http://numbers.computation.free.fr/Constants/Pi/piSeries.html.Guy, R.K. "A series and a Sequence involving Primes." §E7 in Unsolved difficulties in Number Theory, second ed. Brandnew York: SpringerVerlag, p.203, 1994. Hardy, G.H. And Wright, E.M. "Prime Numbers" and also "The succession of Primes." §1.2 and 1.4 in An arrival to the concept of Numbers, 5th ed. Oxford, England: Clarendon Press, pp.14, 17, 22, and 251, 1979. Jameson, G.J.O. The prime Number Theorem. Cambridge, England: Cambridge college Press, p.177, 2003. Knuth, D.E. The art of computer Programming, Vol.2: Seminumerical Algorithms, 3rd ed. Reading, MA: AddisonWesley, 1998. Le Lionnais, F. Lesnombres remarquables. Paris: Hermann, pp.26, 30, and 46, 1983. Moree, P. "Approximation that Singular collection and Automata." ManuscriptaMath. 101, 385399, 2000. Moser, L. "Notes top top Number concept III. ~ above the sum of consecutive Primes."Can. Math. Bull. 6, 159161, 1963. Nagell, T. Introductionto Number Theory. New York: Wiley, 1951. Ramanujan, S. "Irregular Numbers." J. Indian Math. Soc. 5, 105106, 1913. Ramanujan, S. Gathered Papers the Srinivasa Ramanujan (Ed. G.H.Hardy, P.V.S.Aiyar, and B.M.Wilson). Providence, RI: Amer. Math. Soc., pp.2021, 2000. Rivera, C. "Problems & Puzzles: Puzzle 031The median Prime Number, ." http://www.primepuzzles.net/puzzles/puzz_031.htm.Robinson, H.P. And also Potter, E. MathematicalConstants. Report UCRL20418. Berkeley, CA: college of California, 1971. Schroeder, M.R. Number concept in Science and also Communication, v Applications in Cryptography, Physics, Digital Information, Computing, and SelfSimilarity, third ed. New York: SpringerVerlag, 1997. Sloane, N.J.A. Sequences A007504/M1370, A013916, A013918, A030059, A045345, A046024, A050247, A050248, A050936, A065421, A067372, A067373, A078437, A078837, A078838, A084143, A084146, A084147, A086239, A086240, A086241, A086242, A093595, A093596, A093597, A093598, A093599, and A331764 in "The OnLine Encyclopedia of creature Sequences."
Referenced on stclairdrake.netAlpha: element Sums CITE THIS AS:Babois, JeanClaude and Weisstein, Eric W. "Prime Sums." indigenous stclairdrake.netA stclairdrake.net internet Resource. Https://stclairdrake.net/PrimeSums.html
stclairdrake.net net ResourcesMathematica» The #1 tool for producing Demonstrations and anything technical.  stclairdrake.netAlpha» Explore anything with the an initial computational knowledge engine.  stclairdrake.net Demonstrations Project» Explore thousands of complimentary applications throughout science, mathematics, engineering, technology, business, art, finance, society sciences, and more.  Computerbasedmath.org» Join the initiative for modernizing mathematics education.  Online Integral Calculator» Solve integrals with stclairdrake.netAlpha.  Stepbystep Solutions» Walk with homework problems stepbystep from start to end. Hints help you try the following step on her own.  stclairdrake.net problem Generator» Unlimited random exercise problems and also answers with builtin Stepbystep solutions. Exercise online or make a printable research sheet.
See more: Which Chicken Lays The Biggest Eggs ? What Chicken Breed Lays The Largest Eggs
 stclairdrake.net education and learning Portal» Collection the teaching and learning tools built by stclairdrake.net education and learning experts: dynamic textbook, lesson plans, widgets, interaction Demonstrations, and more.

